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Abstract The development of a flexible 32×32 tempera-
ture and tactile sensing array, which will serve as the
artificial skin for robot applications, is presented in this
work. Pressure conductive rubber is employed as the tactile
sensing material, and discrete temperature sensor chips are
employed as the temperature sensing cells. Small disks of
pressure conductive rubber are bonded on predefined
interdigital copper electrode pairs which are patterned on
a flexible copper–polyimide substrate which is fabricated
by micromachining techniques. This approach can effec-
tively reduce the crosstalk between each tactile sensing
element. The mechanical and electrical properties of tactile
sensing elements are measured. Also, the corresponding
scanning circuits are designed and implemented. The tem-
perature and tactile sensing elements are heterogeneously
integrated on the flexible substrate. By using the integrated
32×32 sensing arrays, temperature and tactile images
induced by the heaters/stamps of different shapes have
been successfully measured. The flexible sensor arrays are
bendable down to a 4-mm radius without any degradation
in functionality.
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1 Introduction

The development of humanoid robots has been very
popular recently. Intelligent sensing capabilities of human-
oid robots are critical for effective and safe interactions
between robots and humans. Therefore, the research on
artificial skins used for robotic applications has received
significant attention. The primary purposes of artificial
skins are to realize the information exchange between robot
and human beings as well as environment and to serve as
the sensing systems to avoid damages to humans or robots.
The basic sensing capabilities of an artificial skin include
the sense of touch, the sense of temperature, and so on. For
a typical artificial skin, a large number of sensing elements,
such as tactile sensors and temperature sensors, are required
to be implemented on a flexible-sheet structure of about
few hundred centimeters square area. Also, an artificial skin
should have enough flexibility to cover a three-dimensional
surface.

Most previous works of sensor arrays employed silicon-
based micro-electro-mechanical systems (MEMS) micro-
machining techniques on silicon substrate [1, 2]. However,
silicon material in general is too brittle to sustain large
deformation and thus is not suitable as the substrate
material for flexible skins. In order to ensure sensor arrays
to sustain sudden impact or large deformation, many
research works using flexible substrate material have been
proposed. The typical way to create a flexible substrate for
sensing arrays is to spin-coat polyimide (PI) film on a
carrier wafer, such as a silicon wafer or glass wafer. Then,
micromachining techniques are employed to fabricate
sensing elements on the PI film. Finally, flexible sensing
array is realized by peeling off the PI film from the carrier
wafer [3–6]. In [7], a flexible tactile sensing array is created
by stitching thin metal wires on a conductive polymer-
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based flexible sheet. The stitched wires are carefully
arranged to function as the sensing electrodes and the
signal interconnects of the sensing array. Tajima et al. [8]
employed MEMS manufacturing techniques to fabricate
multilevel touch sensing systems on a flexible substrate,
which can be used to cover wide areas of robot surfaces.
Hasegawa et al. [9] developed a novel type of fabric tactile
sensor which is made from hollow flexible fibers consisting
of electrically conductive fabric and string. In [10], tactile
sensing array were formed by wiring bonding discrete
pressure sensor dies on a flexible printed circuit board. In
[11, 12], tactile sensing arrays were implemented using

capacitive sensing mechanism. Also, Someya et al. [13]
fabricated flexible tactile and temperature sensing arrays
using organic materials. Furthermore, in [12–15], temper-
ature sensing arrays were also integrated with the tactile
sensing arrays.

In this paper, we present the development of an artificial
skin which is realized by heterogeneously integrating tactile
sensing elements and the temperature sensing elements on a
flexible substrate. The major advantages of our approach
are low-cost and easy for fabricating large-area sensing
array. The flexible substrate is fabricated using micro-
machining techniques. Pressure-conductive rubber is used
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as the sensing elements for tactile sensor arrays. A simple
method for fabricating reliable tactile sensing elements is
also proposed. This approach gives excellent electrical
isolation between each tactile sensing element. Further-
more, discrete temperature sensor chips are used to form
temperature array which gives accurate temperature distri-
bution of the skin.

This paper is organized as follows: the design and
fabrication of sensor arrays are described in Section 2.
Section 3 presents the scanning circuits for temperature
and tactile sensing arrays. In addition, a split-scanning
module is also described in this section. Measured results
will be presented in Section 4. Finally, Section 5 draws
conclusions.

2 Design and fabrication of sensor arrays

2.1 Skin structure

In this research, we will focus on the development of a low-
cost artificial skin which is realized by integrating tactile
temperature on a flexible substrate. Figure 1a shows the
schematic of the proposed artificial skin. One side of the
flexible substrate will be exposed to the environment for
signal acquisition. On this side (i.e., the outer side of the
skin), a patterned copper layer serves as the interdigital
electrodes for pressure-conductive rubber, which will be
used as the tactile sensing material. On the other side of the
substrate (i.e., the inner side of the skin), a patterned copper

layer serves as the contact pad for bonding discrete
temperature sensing chips. Figure 1b illustrates the appli-
cations of the skin. The tactile sensing array can be used to
measure the force distribution as the robot hand squeezes an
object. The temperature sensing capability can be used to
avoid danger of heat. Also, the temperature sensing array
can be deployed on the fingers of a robot hand for
measuring the temperature distribution of the object holding
by the fingers.

Figure 2 shows the micromachining process flow for
fabricating flexible skin substrate. The starting material is a
flexible substrate which is in fact a polyimide film with
copper layer on one side [16]. The thicknesses of the PI
layer and the copper layer are 35 and 25 μm, respec-
tively. The copper layer, which is on the inner side of the
skin, is patterned to form the column interconnects and
the soldering pads for the temperature sensor chips (step
b and step c). On the outer side of the skin, the row
interconnect and the electrodes for tactile sensing
elements are created by lifting off a copper film (2 μm)
which is deposited by e-beam evaporation (step d, step e,
and step f). Then, scotch tape is attached on the inner
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side of the skin in order to protect the device for drilling
process (step g and step h). The drilled holes (via-holes)
are filled with copper using electroplating process (step i).
Finally, the tape is removed and the flexible skin structure
is ready for implementing temperature and tactile sensing
elements.

2.2 Tactile sensing elements

Various properties, such as flexibility, durability, and
low hysteresis, are essential for the tactile sensing
material used for artificial skins. The most common
materials are silicon-conductive rubber [17], thermoplas-
tic semi-conductive ink [18], and pressure-conductive
rubber [19]. The major drawbacks of silicon-conductive
rubber are high hysteresis, high noise, and low sensitivity.
On the other hand, sensing elements made by thermoplas-
tic semi-conductive ink are usually not durable. In this
work, we employ CSA (pressure-conductive rubber CSA,
PCR Technical) [20] as the sensing material for the
tactile sensing array. This material, which is made by
mixing elastomer with carbon particles, is a flexible
gray black sheet with 0.5-mm thickness. The CSA
behaves like an insulator when no pressure is applied,
while its electrical resistance reduced significantly under
compression. Figure 3a shows the working principle of
CSA. As no pressure is applied, the conductive particles
are uniformly distributed in CSA without contacting
each other, which makes CSA like an insulator. As CSA
is compressed, as shown in Fig. 3b, the conductive
particles contact each other so that its resistivity de-
creases. The resistance decreases as the applied pressure
increases.

In order to measure the CSA resistance under applied
pressure, a small circular piece of CSA is placed on an
electrode pair which is patterned on the flexible substrate
described in previous subsection. Note that a Z-axis-
conductive adhesive film (3M™ electrically conductive
adhesive transfer tape 9703) [21] is used to bond the CSA
with the electrode pair. Figure 4a shows a fabricated
interdigital electrode pairs for tactile sensing elements,
and Fig. 4b is the picture of the pair bonded with a small
piece of CSA disk using the Z-axis-conductive adhesive
film.

It has to be emphasized that when conductive rubber
materials (e.g., CSA) are used for tactile sensing array, the
most typical approach is to bond a large-area conductive
polymer sheet [22–24] on a substrate patterned with an
array of electrode pairs. This approach is relatively

Fig. 5 Process flow of temperature and tactile sensing arrays
heterogeneously integrated on a flexible copper-PI film
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straightforward for fabrication. However, the tactile
sensing array made by this approach usually has very
large cross-talks between adjacent sensing elements. A
few methods have been proposed to minimize cross-talk
currents [7, 25, 26]. In this work, we reduce cross-talk
current by using small isolated CSA disks which are
punched from a CSA sheet. The size of punched CSA
disks is about the size of each interdigital electrode pair.
Since CSA disks are isolated from each other, electrical
current leakages through adjacent CSA disks can be
effectively reduced.

2.3 Integration of tactile and temperature sensing arrays

Figure 5 shows the process flow of heterogeneously
integrating the tactile and temperature sensing arrays on
the flexible copper–PI film. The starting material is the
flexible skin structure described in previous subsection.
The inner side of the skin structure faces up, as shown in
Fig. 5a. Firstly, temperature sensor chips, MAX6607 (in
SC70 package) [27], are soldered on the corresponding
contact pads on the inner side of the skin (Fig. 5b). The
temperature sensor chips is quite accurate (±0.7°C from
0°C to +70°C) and the required voltage is relatively small
(1.8 to 3.6 V). Then, the skin is flipped so that its outer
side faces up, as shown in Fig. 5c. Also, the skin is placed
above a steel plate which has 32×32 drilled holes. The
steel plate will serve as the handling platform for avoiding
damaging the soldered chips during the process of

implementing tactile sensing elements on the outer side
of the skin. Then, the Z-axis-conductive adhesive film is
placed above the skin (Fig. 5d) and punched CSA disks
are attached above each interdigital electrode pair
(Fig. 5e). In order to ensure that all the CSA disks are
electrically bonded with interdigital electrode pairs, the
whole sensor array is pressed at 0.1 MPa using a thin
acrylic flat plate for 24 h (Fig. 5f). This process is also
essential to avoid non-uniform pressure sensitivity be-
tween each sensing element, resulting in inaccurate
pressure distribution during operation. Finally, the steel
handling plate is removed and the fabricated device is
shown in Fig. 5g.

Figure 6a shows that CSA disks are punched from a
CSA sheet using a seamless steel tube with 3-mm inner
diameter. Figure 6b shows that the punched CSA disks are
attached on the interdigital electrode pair using the Z-axis-
conductive adhesive film. Then, all CSA disks are pressed
at 0.1 MPa using a thin acrylic plate, as shown in Fig. 6c.
Figure 6d is the picture of the fabricated tactile array.
Figure 7a shows the fabricated artificial skin with
temperature and tactile sensing elements. The flexibility
of the device is also demonstrated. The outer and inner
sides of the skin are shown in Fig. 7b, c, respectively. As
shown in the figure, on the outer side of the skin, punched
CSA disks on the predefined interdigital electrode pairs
are employed as the tactile sensing elements. Discrete
temperature sensor chips are soldered on the inner side of
the skin. Since the temperature sensor chip detects
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temperature most effectively by its metal leads, the
environment temperature on the outer side of the skin
can be accurately measured through the via-holes which
are filled with electroplated copper.

3 Scanning systems

3.1 Scanning circuits

Figure 8 is the schematic of a 32×32 sensing array system,
which includes the temperature and tactile sensing arrays as
well as the corresponding scanning circuits. For row
scanning, a set of multiplexers provides the driving power
to sensing elements. For column scanning, another set of
multiplexers is used to receive the data outputs from each
sensor. For the temperature sensing array, the scanning
circuit directly measures the voltage output of each
temperature sensor chip. For the tactile sensing array,
the scanning circuit measures the resistance change of
each sensing element. A constant voltage is supplied, and
the change of the current flowing through the resistor can
be detected by the current-to-voltage converter, as shown
in the figure. The scanned output voltages of the
temperature and tactile sensing arrays are transferred to
their corresponding MCU by an analog-to-digital con-
verter. Scanning requests for each sensing array can be
made by a PC through serial communication port (RS-
232). Also, the scanned data can be transferred to the PC
through RS-232 for visualization and data analysis. The
maximum scanning rate is greater than 3,000 elements
per second. Figure 9a shows the picture of the whole 32×
32 scanning circuits system, which includes an RS-232
switch circuit, a 32×32 temperature scanning circuit, and
a 32×32 tactile scanning circuit. Figure 9b is the picture
of the fabricated artificial skin and the scanning circuit
system.

3.2 Split-scanning module

The requirement of the sensing array sizes is usually based
on applications. For example, for a robot hand, many
8×8 sensing arrays are required to cover each finger,
while a 32×32 sensing array is needed to cover a robot
arm. In other words, it is desirable that the resolution and
size of sensing arrays can be easily tailored to the
applications’ requirements. Therefore, it will be extremely
advantageous if one 32×32 scanning circuit can also be
used for scanning many smaller sensing arrays simulta-
neously. In this work, we develop a split-scanning module
which splits the 32×32 scanning row/column signal leads
(R01–R32 and C01–C32) into four sets of 16×16 scanning
row/column signal leads. The schematic of the system
with the split-scanning module is shown in Fig. 10. On the
split-scanning module, port X is connected to the 32×32
scanning circuit. Port Y is the duplicate port of port X,
while the signal leads of port A, port B, port C, and port D
are in fact the four smaller sets split from the signal leads
of port X. The splitting of signal leads can be easily
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Fig. 8 Schematic of the sensing
array system
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achieved by a double-side printed circuit board. In Fig. 10a,
a 32×32 sensor array can be connected to port Y. In
Fig. 10b, four 16×16 sensor arrays are connected to ports
A–D and can be scanned by the 32×32 scanning circuit

simultaneously. Note that the combinations of row/column
signal leads for ports A–D are also indicated in Fig. 10. By
using the split-scanning module, many smaller arrays of
sensors can be scanned by a single 32×32 scanning circuit.
Figure 11 shows a few fabricated skins with different array
sizes.

4 Measurement and discussion

The measurement setup for characterizing tactile sensing
element can be found in [14]. The measured relationships
of resistance vs. applied pressure for the CSA materials
are shown in Fig. 12a. The curve in the figure is the
average result by measuring one sample sheet 50 times
with different applied pressure. The error bars indicate
the measured maximum and minimum values. The
relationship between the applied load and the deforma-
tion of the CSA is shown in Fig. 12b. Note that the
measured CSA is punched into a circular shape with 3-mm
diameter and 0.5-mm thickness. Based on the measured
results, the Young’s module of the CSA is estimated as
1,450 kPa. The fabricated flexible sensor arrays are
bendable down to a 4-mm radius without any degradation
in functionality.

Aluminum heaters of different shapes and the measured
temperature distributions caused by these heaters are
shown in Fig. 13. These heaters, which are 10 mm in
thickness, are put on a hot plate with 70°C for 1 min
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before they are placed above the sensing array. During the
measurement, the distance between the heaters and the
sensor array is about 1 mm. Note that the sensitivity of
the temperature sensor chip is 0.01 V/°C [27]. Obviously,
the heaters of different shapes, including the triangular
shape, the star shape, the square shape, and the alphabet
letters “NTU”, are clearly resolved by the temperature
sensor array. The measured pressure distributions using
acrylic stamps of different patterns are shown in Fig. 14.
The figure also shows the pictures and dimensions of these
stamps. For Fig. 14a, b, the applied pressure is produced
by placing a 3-kg weight on top of the stamps. Similarly, a
2-kg weight is used for Fig. 14c, d. Note that two-
dimensional sensing images of the temperature and
pressure measurement are obtained using 32×32 sensing
arrays. Hand pattern is one of the human characteristics
which can be used to recognize human identity. By using
the developed sensor array, the patterns of human palm
and fingers can be extracted from the pressure and
temperature images, as shown in Fig. 15.

5 Conclusion

In this work, the design, fabrication, and measurement of a
flexible sensor array system is presented. The sensor array,
which is composed of a 32×32 temperature sensing array
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and an 32×32 tactile sensing array, will be used as the
artificial skin for robot applications. The tactile and
temperature sensing elements are heterogeneously inte-
grated on a flexible substrate which is fabricated using

micromachining techniques. In order to reduce the
cross-talk between each tactile sensing element, small
disks of CSA are bonded on interdigital electrode pairs
individually. Discrete temperature sensor chips, which
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serve as the temperature sensing elements, are soldered on
the flexible substrate. The corresponding 32×32 scanning
circuit for each sensing array is designed and implemented.
A split-scanning module, which gives the function flexi-

bility of the 32×32 scanning circuits, is proposed and
designed. Measured results of temperature and pressure
distributions using heaters/stamps of different shapes are
also presented.
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